Maintenance effect modeling of a railway system

AMMSI Workshop - Pau

24/01/2013

<u>William Lair</u> (EDF R&D)
Rachid Ziani (SNCF Infra)
Sophie Mercier (UPPA)
Michel Roussignol (UPEMLV)

Summary

- 1. Context
- 2. A railway system
- 3. Lifetime distribution and preventive maintenance effect
- 4. System modeling
- 5. Discussion and conclusions

Solution : Preventive maintenance

System modeling by probabilistic approach

A maintained two-component system

Two components (A and B): functionally dependent,
For each component:

- o Two failure modes (F_1 and F_2):
 - o the system remains up in case of one single failure in mode F_1 ,
 - o two successive failures in mode F_1 lead to a system "severe" failure,
 - o one single failure in mode F_2 leads to a system "classical" failure,

□ Severe failure:

o can lead to an undesirable event (safety issue) and unavailability (a few hours),

Classical failure:

o does not lead to safety issue but induces unavailability (a few hours),

□ The present maintenance policy:

- o Corrective replacement of all down components at system failure,
- o Periodic (yearly) preventive maintenance:
 - o Replacement of failed components (in mode F_1),
 - o Adjustment of working components.

Event tree

Examples of operating railway systems behavior

Objectives

Estimate the parameters of the components lifetimes p.d.f.,

Estimate the effect of the preventive maintenance actions (adjustments),

- Propose a new preventive maintenance strategy which reduces the maintenance cost with the same safety and availability constraints (is it reasonable to perform the yearly PM actions only every two years?)
- □ This new maintenance strategy has to be GAME (in French) globally at least equivalent from a safety point of view.

Lifetime distributions and PM effects

We have at our disposal :

□ Characteristics of operating components (technology, operating time,...),

□ Number of achieved PM actions (PM times are unknown),

□ The failure times,

□ The failure modes.

Maintenance effect modelling

ARA₁ model (Order 1 Arithmetic Redution of Age model) [Doyen & Gaudoin],

Principle : arithmetic reduction of the component age since the last PM action,

$$A(t) = t - \rho T_{N_{t^{-}}} \qquad \lambda_t = \lambda(t - \rho T_{N_{t^{-}}})$$

- Objective : estimation of both intrinsic failure rate and maintenance effect coefficient
 - $\rho = 1$: AGAN

$$\rho = 0$$
: ABAO
 $\rho \in [0,1[:imperfect maintenance]$

Intrinsic failure rate hypothesis

Weibull:
$$\lambda_t = \frac{\beta}{\eta} \left(\frac{t - \rho T_{N_{t^-}}}{\eta} \right)^{\beta - 1}$$

□ Bertholon : hypothesis → a maintenance action has no effect before the beginning of the « ageing »

$$\lambda_{t} = \frac{1}{\eta_{0}} + \frac{\beta}{\eta_{1}} \left(\frac{(t - t_{0})^{+} - \rho \left(T_{N_{t^{-}}} - t_{0}\right)^{+}}{\eta_{1}} \right)^{\beta - 1}$$

Estimation with maximum likelihood method (gradient for Weibull and simulated annealing for Bertholon)

Results

Component A failure rate

Running Time

Component B failure rate

Estimation of the failure mode

- □ When a failure occurs, we suppose that it is in mode 1 with probability p_A (or p_B) and in mode 2 with probability $1 p_A$ (or $1 p_B$), independently of anything else.
- □ For each component, p_A (or p_B) is estimated by the ratio between the number of failures in mode 1 and the total number of failures.

How to reach our objective?

Non Homogeneous Piecewise Deterministic Markov Process

$\mathbf{NHPDMP} = (\mathbf{I}_t, \mathbf{X}_t)$

- > Used in dynamic reliability to model systems in interaction with their environment
- \Box I_t: system state at time t (discrete)
- State of the system components : up or down
- $\succ \{(1,1),(1,0),(0,1)\}$
- $\Box X_t$: environmental condition at time t (continuous)
- \succ is deterministic between the jumps of process I_t
- here: models the components dates of entry into service
- **\Box** Rates between states: failure rates of the components (depend on time *t*)
- Two possible methods of quantification:
- Monte-Carlo simulations (makes it difficult to use stochastic optimization algorithm)
- Finite Volume scheme

Finite volume scheme

Principle: quantify an approximation of the PDMP marginal distribution at time *t* through the discretization of the Chapman Kolmogorov equation (both in time and space),

□ Deterministic results → stochastic algorithm of optimization (simulated annealing),

Quantification of rare events,

□ For our system, calculations are fast.

Maintenance optimization

Extension of the yearly PM policy:

o by a PM action, preventive replacements of components older than some limit age (and adjustment of younger ones).

Objective :

- o find both limit ages and PM periodicity (one or two years?) which minimize the maintenance cost, under safety constraints,
- o compare the results with the present PM policy.

Costs:

o failure costs + PM (adjustment) costs + PR costs + CR costs.

Optimization:

o Simulated annealing algorithm.

The PM effect does not depend on the periodicity

Justified by the choice of an ARA1 model

Maintenance optimization

Preventive Maintenance Step (PMS)	1	1	2	2
Components renewal	Νο	Yes	Νο	Yes
Cost		-16%	-0.2%	-17%
Undesirable events	Current strategy	-42%	+200%	+66%
"Classical" failures		-31%	-0.5%	-31%

Results of different maintenance strategies

Maintenance optimization

Number of failures

Time Number of undesirable events

Discussion

 \Box ARA₁ can be used to quantify the maintenance effect but a lot of data is required.

 \Box How can we choose between ARA₁ or ARA_m, with m>1?

□ Is it possible to evaluate a confidence interval for the ARA model?

□ How can we take into account a periodicity change?

Conclusions

□ ARA₁: estimation of 5 coefficients with Bertholon hypothesis → requires a lot of data,

- PDMP: an interesting modeling solution for taking account ageing components and maintenance effects,
- □ Finite volumes scheme: quantification method adapted to maintenance optimization,
- □ Method has been used to optimize maintenance of SNCF systems with significant operating population.